If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x+x^2=131
We move all terms to the left:
x+x^2-(131)=0
a = 1; b = 1; c = -131;
Δ = b2-4ac
Δ = 12-4·1·(-131)
Δ = 525
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{525}=\sqrt{25*21}=\sqrt{25}*\sqrt{21}=5\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-5\sqrt{21}}{2*1}=\frac{-1-5\sqrt{21}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+5\sqrt{21}}{2*1}=\frac{-1+5\sqrt{21}}{2} $
| 2x-4/6=2 | | -2-x=3 | | -4(-4x-8)-6x=-68 | | 17r-10r+7r+8r=44 | | 2x=220-97 | | 3+5n=1+2+8n | | (x+4)/3=1 | | 2p-26+2p+22=180 | | x+6.61=8.29 | | -6+2b=2b+b | | -1/2(4x-8)=10 | | 6x+5x-4=2x-8+x | | 11t+9t-5t-8t=7 | | -5=-5v-(-8)v | | w-2.78=3.7 | | 6n+4=- | | (3x-90)+2x=540 | | 3x+4=43x-16 | | 7/r=6/2 | | -8(n+10)=8 | | 252=80-u | | 2/3=4/r | | 25x-125=250 | | 3x+2x=40÷10 | | -11x+1=-98 | | 5+25=15x+29 | | 6x-12.9=32.1 | | -9+b=14 | | 48=13-7a | | -1-2x^2-5x^2=-239 | | (x+6)/10=0 | | n/3=13=15 |